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Solvable null model for the distribution of word frequencies
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Zipf’s law asserts that in all natural languages the frequency of a word is inversely proportional to its rank.
The significance, if any, of this result for language remains a mystery. Here we examine a null hypothesis for
the distribution of word frequencies, a so-called discourse-triggered word choice model, which is based on the
assumption that the more a word is used, the more likely it is to be used again. We argue that this model is
equivalent to the neutral infinite-alleles model of population genetics and so the degeneracy of the different
words composing a sample of text is given by the celebrated Ewens sampling f¢fthata. Pop. Biol.3, 87
(1972)], which we show to produce an exponential distribution of word frequencies.
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A remarkable aspect of natural languages is Zipf's law: ifword choice model is identical to the celebrated Wright-
a large sample of words in a text are arranged in rank ordeFisher model of population genetics in the neutral regime
from most frequent to least frequent, then the dependence ¢12] (see[13] for an inspiring overview and then use the
the frequencyP of a word on its rankp is very well de- elegant mathematical apparatus developed in the early 1970s
scribed by the power-law distributioRioc 1/p, regardless of [14] to show that the word frequency distribution is expo-
the language or speakgl]. The significance of Zipf's law in  nential in the asymptotic limit.
language, however, is obscure. On the one hand, the finding The computer implementation of the discourse-triggered
that texts produced by the random emission of symbols andiord choice model is as followf®]. In the initial generation
spaces, so that words of the same length are equiprobabléhe word store is composed &f different words. TherN
also generate word frequency distributions that follow Zipf’swords are chosen randomly from this set, forming the word
law (more precisely, the generalized Zipf's laf2,3]) store of the second generation. Of course, some words of the
prompted the claim that this law is linguistically very shal- original word store will be missing, while others will appear
low [4]. On the other hand, quantitative analyses of issuef several copies. The procedure is repeated with the new
such as the evolution of syntactic communicatiéhand the  word store being selected from that of the previous genera-
emergence of irregularities in languaf@ usually assume tion, until the stationary regime is reached. The result of this
that individuals use lexicons characterized by Zipfian wordprocedure is, as expected, a drastic vocabulary loss—the
frequencies. Moreover, the fascinating enterprise of deterfinal vocabulary being formed by a single woid@he term
mining whether noncoding regions of DNA sequences haveocabulary refers to the set of different words in the word
linguistic features, and hence whether they carry out biologistore) To evade this problem, it is assumed that at each
cal information, is based on the assumption that Zipf's law isgeneration there is a probability that the selected word is
a crucial ingredient of languadé&,8. chosen from the initial word storé.e., the environment

Clearly, if the random emission of symbols is accepted asather than from the word store of the previous generation.
the null hypothesis for the creation of texts in natural lan-This guarantees a continuous supply of new words, resulting
guages, then there is simply no need to seek explanation fan a nontrivial word distribution in the stationary regime. We
Zipf's law, since it is accounted for by the null model. Not emphasize that the outcome of this procedure is not the pro-
surprisingly, this viewpoint has been criticized on theduction of text or speectto keep repeating a few words is
grounds that a valid null model should be based on realistioot a good speech strategyput the generation of a station-
assumptions on the factors that originate natural texts. In thiary word store characterized by a particular frequency spec-
vein, an alternative null hypothesis—the discourse-triggeredrum, i.e., the average number of words that occur at a given
word choice model—was put forward recently by Tullo andfrequency. Texts and discourses are then formed by drawing
Hurford [9] (see alsd10,1] for a similar proposal In this  words at random from this word store.
setting, two sources of words are made available to speakers. The algorithmic procedure given above can be couched in
The first is the environment, viewed as a large repository ok simple mathematical notation. Assume that the word-store
distinct words, from where the speakers can choose words t®ize N is fixed and that there arK different words(the
start a conversation or to refresh an already worn out wordocabulary size Let m; denote the number of copies of the
store. The second is the words used in the preceding conveth word in the word store, so that its frequencyis m/N.
sations, which leads to a positive feedback loop: the mordo avoid the uninteresting single-word vocabulary, let us as-
frequent a word is, the more frequent it will become. Accord-sume that there is a mutation probabilityper word so that
ing to those authors, this last and very plausible ingredient isnutation occurs to any of the oth&-1 words with equal
responsible for the Zipfian distribution of word frequenciesprobability. Since we will eventually take the limitd— oo
observed in natural texts. However, in this contribution weand K— <, this mutation scheme will always introduce a
argue that this is not so. In particular, we point out that thisnew word into the vocabulary. Strictly, the procedure for
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vocabulary refreshment employed in the original model is 1

equivalent to migration in population genetics, but if the <2 ¢(pi)>=f dx f(x) (%) ©)
population size and the number of allele types are large then ! 0

it can be shown that migration and mutation play exactly thesg that, in particulaK=;p;)=1, as expected. For example, the
same role in the evolution dynami$2]. Hence if a word  ropapility that two words drawn at random are identical is
has.frequencyq at one generation, then the expepted .\,/alue<2ipi2>:1/(1+0). Use of Eq(5) allows the calculation of the
of its frequency in the subsequent generation Xs probability 7, that in a random sample of words drawn

=X(1-u)+(1-x)v wherev=u/(K-1). The number of cop- ¢ the word store we find exactlydifferent words[14],
ies of wordi at the next generation is then given by the

binomial distribution ~ I, 6%
Wk_ |10+ |202+ e+ |n0n

(6)

where the coefficientl are the Stirling numbers of the first
. i . kind defined by 6(8+1)---(6+n=1)=1,6+1,02+---+I,0".

If one replaces the terms “word” by aIIeIe_ and W(.)rd Once it is known that the sample of words containsk
store” by _po_pulano_n the_n th? _Mark(_)v chain mOdeI.JUSt different words, we can address the question of how many
described is immediately identified with the Wright-Fisher ;.. s aach word appears in the sample. The answer to this

model of population genetics in the neutral regime, i..e., indifficult question is provided by the celebrated Ewens sam-
the case that there is no selection pressure favoring thﬁling formula[14,19

choice of a particular word12]. In the limits N>1 andu

N _
p(my) = ( )(x{)mi(l —x/ )N, (1)
m

<1 such that the produ@=2Nu is finite, it can be shown n!

that the probability densitys(x,t) that a given word, say, P{ny,np,.....ndkinp = (7)
_ i k! I,ning---ny

has frequency at timet obeys the Fokker-Planck equation

[12] with E:‘:1ni:n. Heren; is the number of copies of woridin

the sample oh words.

i¢p_ 1 & J Knowledge of Ewens formula allows us to obtain directly
at 2N 0X2[x(1—x)¢]+ ax{[UX—U(l—X)]¢}. ) the distribution of word frequencies. To this end we need
) S only to generate integerns,...,n, with the probability dis-
The stationary distribution is then tribution (7) and then sort them out according to their rank.
T[OK/(K - 1)] More pointedly, ifl is the most frequent word.e., n; is the
H(X) = ————————xIKD(] — )01 (3) largest among thé& integer$ thenn,/n is the frequency of
rorie(K -1 the first-rank word, and similarly for the words of lower

ranks. This can be easily achieved using the Metropolis al-
gorithm as follows(see, e.g.[19]). Considem balls distrib-
uted amongk urns, so that no urn is empty. The state of the
system at stepr is specified by the vectorn,
=(ny,ny,...,Nny), wheren; >0 is interpreted now as the num-

dicating that the particular wortwe have considered will ber of balls N urm. Suppo_se the system is In state We
ultimately disappear from the vocabulary. This is expected:hoose two distinct urns, sayandj, at random. Wlthout loss
since in this framework can mutate to infinitely many dif- ©f 9enerality we consider urnas the donor and urpas the
ferent words but no word can mutate back tdhis feature ~ "€C€PLOr. Ifni=1 then we .ma|nta|n the current stgte in the
is in conformity with estimates from glottochronologiye., "€t StePN~1=n,. Otherwise we calculate the ratio

the chronology of languaggthat suggest the rule of thumb nn:

that languages replace about 20% of their basic vocabulary R= — L — (8)
every 1000 year§l6,17. (n=2)(n; + 1)

Although we cannot focus on the evolution of a particularand move one ball from urnto urnj if R=1 so that the new
word, we can calculate many other interesting properties ofiate becomesi ,;=(ny,...,n;=1,...,n;+1,...,ny). On the
the word store. For instance, the mean number of words ither hand, ilR< 1 we generate a uniformly distributed ran-
the word store with frequency betwermndx+dxis simply  dom number and move one ball from to j provided that

o a1 -1 R>r, otherwise we keep the old state in the next step. These

f _,l[nx[Kd’(X)] = (1 =) @ tiles define the transition probabilities of a Markov chain,
whose stationary state is distributed according to the Ewens
which can also be interpreted as the probability that a wordampling formula.
occurs in the word store with frequency (ix,x+dx) [14]. To More specifically, we use the following procedure to pro-
illustrate the use of the “frequency spectrurf(k) let us  duce the distributions of word frequencies. For fixedndn
write the frequencies of the various words occurring in thewe generate the number of distinct worksaccording to
word store ap;,p,,... and consider any function of the form distribution(6). Oncek is known we can start the iteration of
Zi(p) where ¢(p;) is of order of p* with «=1. The ex- the Markov chain urn model just described. The initial state
pected value of any such function is then given by is chosen such that theballs are distributed as uniformly as

wherel'(+) is the gamma function. Our focus is on the limit
K—oo, termed the infinite-alleles model in the molecular
evolution literature[15], in which the number of distinct
words(the vocabulary sizein the infinite word store is infi-
nite too. Taking this limit in Eq(3) yields ¢«1/K—0, in-
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FIG. 1. Semilogarithmic plot of the average frequerieyas FIG. 3. Semilogarithmic plot of the rescaled average frequency

function of rankp for n=2x 10* and 9=10 (+), 25 (O), 50 (V), P’ as function of the rescaled rapK for the data of Fig. 1. The
75 (X), and 100(O). The straight lines are the numerical fitting straight line is the functio®’ =exp(—p’).
obtained discarding the low rank region.

) , , ponential in the asymptotic regime, is in disagreement with
possible among thk urns. After a transient p_erlod of 1000 ihe results of the proponents of the model, who found a
s‘;eps, é"e t'CO”?I‘?(tk 1000 samp:le ?tatesh att |{1terva{s on 1|g0power—law distribution [9]. The brute-force simulation
ismergzldia?erlg/n?he refq?;rirr]ggniﬁ?o?moat%?\c—tﬁea fere\:qice(r)\(r:fgs S method those authors resorted to, however, precludes a full
function of the rank. The entire process is then repeated 5 fatistical assay Qf _the word frequency dlstr|_but|on. T_he

Study of the linguistic features of the noncoding DNA is

times. At the end of this procedure we hav 50* values T
for, say, the frequency of the word of rank 1. The results2nother example where the finding of a power-law word fre-
ency distribution is questionab|&,8§].

presented in Figs. 1-3 represent averages over these valu&s! i .

The dependence of the average frequency of a oo _ From the_ standpoint of a null model, the failure of Fhe
its rank p, depicted in a semilogarithmic scale in Fig. 1, dlscqurse—trlggered word c_h0|ce mod(_al to reproduce Zipf’'s
reveals the exponential nature of the asymptotic regime oW IS most welcome, as it calls for improvements of the
the word frequency distribution. This is corroborated by thePasic model that may ultimately unveil the mechanisms re-

results presented in Fig. 2, which show that the leveling offsPonsible for the power-law distribution of word frequencies.

of the distribution in the high rank region is an effect of the N this line, we mention that a similar word choice model, in
finite sample sizen. Moreover, that seems to be the sole which the word store grows unconstrained from a single ini-

effect ofn, as indicated by the collapse of the data in the lowfi&! word and new words are generated by mutation, seems to
oxhibit a(nonstationarypower-law distribution of word fre-

and intermediate rank regions. A more quantitative perspede - . -
tive is provided by Fig. 3 where the rescaled frequeRty quencieq10,11]. Hence this model lacks the effective com-
=9P/0.62 is plotted against the rescaled rasfkep/ 6 in a petition between words that results from the limitation of the

semilogarithmic scale. The data for different valueggand ~ Word-store size. More importantly, the unbounded growth
n, as wel) are fitted very well by the exponential function prevents the attainement of the key element of the present
P’ =exp-p'). approach—a stationary, though not static, word store from

Our main result, namely, that the distribution of word fre- where WOI’(;IS are selected to form texts and discourses.
quencies of the discourse-triggered word choice model is ex-. The not|_on .that words compe?e and languages eyglve
similarly to individuals and populations was already familiar
10" - - - - - in Darwin’s time[20]. The well-documented development of
Romance languages from Latine., the gradual divergence
2 @% of the languages of France, Italy, Spain, Portugal, and Roma-
107 "9 ] nia from Latin, as well as from each othaffers a convinc-
qﬁ‘% ing proof that groups of related languages develop and di-
o 103 L %’% ] verge from a common ancestral tongue, similarly to gene
@%%MMA lineages[16,17. However, the use of analyticgPl] and
9% computational22] methods derived from evolutionary biol-
10 Fogyvvy ogy to analyze language features and linguistic data is still
incipient. The present contribution dovetails with these ef-
, , , , , forts by using the equivalence between the neutral evolution
0 50 100 150 200 250 300 model and the discourse-triggered word choice model to cal-
p culate the distribution of word frequencies of this alternative
null hypothesis for text production.
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FIG. 2. Semilogarithmic plot of the average frequereyas
function of rankp for =50 andn=2x1C® (A), 10* (V), and 2 The research at Sao Carlos was supported by CNPqg and
X 10% (O). FAPESP, Project No. 99/09644-9.
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