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Abstract─Humans have a drive to maximize 

knowledge of the world, yet decision making data also 
suggest a contrary drive to minimize cognitive effort 
using simplifying heuristics.  The trade-off between 
maximizing knowledge and minimizing effort is 
modeled by simulation of a challenging decision task.  
The task is to choose which of two gambles has the 
highest probability of success when the alternative 
with higher success probability also has lower success 
frequency. 
 

I. INTRODUCTION 
 

ecause of the large number of decisions we 
must make and the shortness of time for many 
of them, humans have evolved a set of 

neurobehavioral processes that provide for efficient 
decision making.  The work of Reyna and Brainerd (see, 
e.g., [1-4]) suggests that we encode traces of items we 
learn, including those we choose from, in two different 
ways: verbatim and gist encoding.  As we become adults, 
or as we become familiar with a domain of knowledge, 
our predominant encoding gradually switches from 
verbatim to gist. 

The ability to grasp the gist of a problem, and ignore 
relatively minor details, facilitates not only our efficiency, 
but also our ability to recognize the problem as similar to 
some others we have encountered before and thereby 
draw on our memory of those other problems.  Yet gist 
processing is also a main source of heuristics that can 
sometimes lead to errors.  In particular, as Reyna and 
Brainerd note, we sometimes encode the wrong gist for a 
particular problem. 

Complex reasoning capabilities often involve 
decisions between competing gists.  A variety of decision 
making tasks tend to evoke two or more competing rules, 
one of which is normatively superior to the others.  One 
example is a task that involves choosing a larger 
probability versus a larger frequency of either a gain or a 
loss (frequency in the absolute, not relative, sense; see, 
e.g., [4-7]). 
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Yamagishi [5] found that the majority of their 
participants judging the riskiness of various causes of 
death were more influenced by the described numerosity 
of deaths than by the probability of death.  For example, 
they rated cancer as riskier when it was described as 
killing 1,286 out of 10,000 people than when it was 
described as killing 24.14 out of 100 people. 

The phenomenon whereby the same probability is 
experienced as larger if it comes as a ratio of two larger 
numbers has been called ratio bias (e.g., [7]).  Pacini and 
Epstein [7] found that many of their participants seemed 
to be aware of their ratio biases, but were conflicted 
between emotional and rational influences on their 
choices. 
 

II. THE RATIO BIAS PARADIGM 
 

To limit our theoretical domain, we simulated a 
particular version of the frequency/probability decision 
task due to Denes-Raj and Epstein [6].  The aim of our 
work is to generalize from modeling this restricted case to 
a more general model of rule selection; in particular, 
selection between a simple, readily available, but 
nonoptimal rule and a more complex but more accurate 
rule. 

Participants in the Denes-Raj and Epstein experiment 
were assigned randomly either to a win condition or a loss 
condition.  In the win condition, they were shown two 
bowls containing red and white jellybeans, told they 
would win a certain amount of money if they randomly 
selected a red jellybean, and instructed to choose which 
bowl gave them the best chance of winning money.  In 
one of the bowls, there were always a total of 10 
jellybeans out of which 1 was red.  In the other bowl, 
there were a total of 100 jellybeans out of which some 
number greater than 1 but less than 10 were red.  Hence, 
choice of the bowl with a larger frequency of red 
jellybeans was always nonoptimal, because the 
probability of drawing red from that bowl was less than 
1/10.  The loss condition used the same two bowls, but 
the participants were told they would lose a certain 
amount of money if they selected a red jellybean, so the 
bowl with more jellybeans was the optimal choice. 

Figs. 1 and 2 show percentages of nonoptimal 
responses in both win and loss conditions.  “Nonoptimal 
response size” in that graph means the difference between 
the chosen option and 10 out of 100 which was equivalent 
to 1 out of 10; that is, 1 represents the choice of 9 out of 
100 over 1 out of 10, 2 represents the choice of 8 out of 
100, et cetera.  
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Fig. 1.  Experimental results [6] on percentages of time the 
higher-frequency, lower-probability alternative was chosen on 
win trials.   See the text for explanation of nonoptimal response 
size. (Adapted from [6] with permission of the American 
Psychological Association.) 

 
In the win condition, the majority of participants made 

the nonoptimal choice when the choice was 9 out of 100 
(nonoptimal response size 1) versus 1 out of 10, and about 
a quarter still chose 5 out of 100 (nonoptimal response 
size 5) over 1 out of 10.  Larger response sizes are not 
shown in the graph, but the authors remarked that no 
participant chose 2 out 100 over 1 out of 10.  In the loss 
condition, the pattern of drop-off was similar but there 
were significantly fewer nonoptimal choices.  The authors 
explained the difference between win and loss conditions 
by noting that the loss condition involves negative affect, 
which leads to more careful (and therefore, at least 
sometimes, rational) consideration of alternatives. 
 

 
 

Fig. 2.  Experimental data from [6] for the loss condition.  
(Adapted from [6] with permission of the American 
Psychological Association.) 

 
III. THE NETWORK MODEL 

 
Our model is based on assumed functions of different 

areas of the prefrontal executive system, notably the 
anterior cingulate cortex (ACC) and dorsolateral 
prefrontal cortex (DLFPC).  One of us (DSL) is 

collaborating with Dr. Daniel Krawczyk (Center for Brain 
Health, University of Texas at Dallas) on brain imaging 
experiments designed to test our model by studying 
activations of these two regions for different classes of 
decision makers on the probability/frequency task. 

First let us describe three basic types of decision 
makers (DMs) on this task (with the caveat that these 
characterizations may either be personality-dependent, 
task-dependent, or both): 
 

(a) DMs who choose, say, 8-in-100 over 1-in-10 
and are not aware of any reason to do 
otherwise; 

(b) DMs who choose 8-in-100 over 1-in-10 but 
verbalize a numerical reason for making the 
opposite choice; 

(c) DMs who correctly choose 1-in-10 over 8-in-
100. 

 
Our hypothesis is that types (b) and (c) will show 

more ACC activation than type (a), and type (c) will show 
more DLPFC activation than either type (a) or (b).  The 
hypothesis about ACC is based on that region’s role both 
in detection of potential errors and in response conflicts 
[8, 9].  Hence, decision makers who note a potential 
conflict between competing gists [1-4] such as frequency 
and probability (or, as in Epstein’s studies, “rational” and 
“emotional” criteria) should tend to show high activity in 
that region.  The hypothesis about DLPFC is based on a 
large body of research implicating that area (especially in 
the left hemisphere) in complex working memory 
manipulation.  Recent fMRI studies have shown DLPFC 
activity correlates with accurate stimulus-response 
contingencies [10] and rule-based response selection [11]. 

Our neural network theory incorporates differences 
between individuals in two parameters representing ACC 
and DLPFC function.  One or another of these parameters 
could correlate with the psychological construct of need 
for cognition developed by Cacioppo and Petty [12, 13].   
This construct has been characterized as follows: 
 

People high in need for cognition possess high 
intrinsic motivation to engage and enjoy effortful 
cognitive activities, they are able to recall more 
relevant information about the task, to analyze 
accurately the quality of arguments … when 
compared with individuals low in the need for 
cognition ([14], pp. 142-143). 
 
The decision between the two alternative gambles is 

based on either one of two rules, a heuristic rule based on 
frequencies and a ratio rule based on probabilities.  The 
“ACC” parameter, called α, determines the likelihood of 
choosing the ratio rule for a given pair of gambles. If the 
ratio rule is chosen, the “DLPFC” parameter, called δ, 
determines the probability that the optimal response is 
made.  The choice between rules is suggested by the 
modeling framework of neural modeling fields (NMF) 
[15].  The basis of NMF is that conceptual models of the 
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same events in the world compete with one another and as 
one ascends in the network hierarchy, these models 
become both more complex and more accurate 
representations. 

The heuristic rule is defined by the frequencies of the 
alternatives and the fuzzy concept of “much larger than 
1,” which is close to one of Zadeh’s original examples of 
a fuzzy set [16].  It is assumed that in the absence of 
sufficient ACC activity, decision is controlled by the 
emotional center in the amygdala using a rule "choose k 
out of 100 over 1out of 10 if the numerator k is much 
larger than one."  The denominator may affect the values 
of the fuzzy set that rule generates but is then ignored.  
The fuzzy membership function of k in the “much larger” 
category, called ψ(k), is set to be a ramp function that is 
linear between the values 0 at k = 3 and 1 at k = 13, hence,  
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The ACC parameter α, across trials (representing all 
choices made by all participants in the experiment), varies 
uniformly over the interval [0, 1].  If the function ψ(k) of 
(1) is less than or equal to α, the heuristic “much larger” 
rule is chosen.  Otherwise, a rule of “largest ratio of 
numerator to denominator” is chosen, that is 
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But that ratio rule, while more likely to lead to the 

choice of the higher probability alternative than the 
heuristic rule, does not guarantee the higher probability 
alternative (in this case, 1 out of 10) will be chosen.  This 
is because of the Gaussian tuning curves of numerosity 
detectors in the parietal cortex [17, 18], which have been 
suggested as a neural substrate for imprecise numerical 
“gists” [19]. 

Our network algorithm assumes that the numerators 
and denominators of both alternatives (k, 100, 1, and 10) 
each activate a Gaussian distribution of parietal 
numerosity detectors.  Hence, before the ratios are 
computed and compared, each of those numbers is 
multiplied by a normally distributed quantity with mean 
1.  To obtain the standard deviation of this variable 
normal multiplier, we assume (based on the DLPFC’s 
working memory functions) that DLPFC inputs to parietal 
cortex sharpen the tuning of these numerosity detectors.  
Hence, higher dorsolateral activity should lead to a 
smaller standard deviation and thereby greater accuracy 
of relative probability estimations.  Specifically, the 
standard deviation of each normal quantity is proportional 
to 1-δ, with δ being the DLPFC parameter.  We found that 
a value of .1(1-δ) was fairly accurate in reproducing the 
data of Fig. 1 for the win condition.  Across trials, we 
assumed that δ is normally distributed with mean .5 and 
standard deviation .25: the wide deviation relative to the 

mean mimics the wide range in human need for cognition 
[12, 13]. 

Hence if the ratio rule is chosen, the nonoptimal 
choice of k out of 100 over 1 out of 10 is made if the 
perceived ratio of red jellybeans to total jellybeans is 
higher in the first alternative than in the second 
alternative.  Based on the Gaussian perturbations of 
numerators and denominators described above, this means 
that a nonoptimal choice is made if and only if 
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Thus far we have described the simulation algorithm 

as a mathematical process without reference to a neural 
network diagram.  However, ratios such as shown in Eq. 
(3) can be interpreted as steady states of a shunting on-
center off-surround network, as follows.  Present the two 
alternatives as inputs to the network shown in Fig. 3.  
Assuming perfect accuracy of numerical perceptions 
(otherwise the values k, 100, 10, and 1 in the circles of 
that Fig. are replaced by their normally perturbed values), 
the activity of the node u1, representing the utility (i.e., 
reward value) of the bowl with k red out of 100, can be 
described by a nonlinear shunting differential equation 
with excitatory input k and inhibitory input 100-k: 
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where λ is a decay rate.  If we assume that time is short 
enough that the decay rate λ is 0, set the derivative in (4) 
to be 0 and solve for u1, we obtain as a steady state value 
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which is exactly the probability of drawing a red jellybean 
from Bowl 1.  Similarly, the steady state value of u2 
comes out to be 1/10, the probability of drawing a red 
jellybean from Bowl 2.  The mutual nonrecurrent 
inhibition between those nodes leads to the choice of 
whichever bowl has the larger ui value. 

Returning to the algorithm, by Eq. (2), since α is 
uniformly distributed across [0,1], the probability of the 
heuristic rule being chosen for a given value of k is 1-ψ(k) 
as defined by Eq. (1).  Assuming that the heuristic rule 
does not engage the ACC and thereby always leads to a 
nonoptimal choice, the probability of a nonoptimal choice 
becomes 
 
  ψ(k) + (1-ψ(k))r(k)  (5) 
 



where r(k) is the probability that the inequality (3) holds, 
that is, the probability of a nonoptimal choice if the ratio 
rule is chosen. 
 

 
 

Fig. 3.  Network representing choice between k-out-of-100 and 
1-out-of-10 assuming use of the ratio rule.  k out of 100 is 
interpreted as k good and 100-k bad; similarly, 1 out of 10 is 1 
good and 9 bad.  Probabilities of drawing red in each bowl are 
steady state values of Eq. (4) for node activity at u1 and its 
analog at u2, representing “utilities” of the two bowls.  Arrows 
denote excitation, filled circles inhibition. 
 
Hence (5) was graphed as a function of nonoptimal 

response size (which = 10-k) in order to simulate the data 
curves in Figs. 1 and 2.  This was done via Monte Carlo 
simulations in MATLAB R2006a, the program being run 
1000 times with δ allowed to vary normally about a mean 
of .5 with standard deviation .25. 

Fig. 4 shows the results of this simulation of the win 
condition in the experiment of [6].  The simulation fits the 
data of Fig. 1 fairly closely, going from a maximum of 
over 60% nonoptimal responses for k = 1 to slightly above 
20% nonoptimal responses for k = 5. 

For the loss condition, the same program was run 
except that the probability of ψ(k) of staying with the 
heuristic rule was cut in half, leading to the fraction of 
nonoptimal responses being 

 
.5ψ(k) + (1-.5ψ(k))r(k) (5a). 
 

In other words, the loss condition was assumed to engage 
the ACC more than the win condition.  The resulting 
graph, shown in Fig. 5, fits the data of Fig. 2 fairly 
closely. 
 

IV. DISCUSSION 
 

Can we distinguish using brain imaging those decision 
makers who use optimal versus nonoptimal rules in 
probability tasks?  In a less cognitively demanding task, 
DeMartino et al. [20] found differences in brain activation 
patterns between heuristic-bound decision makers and 
DMs that violate typical heuristics.  This study used a 
monetary analog of Tversky and Kahneman’s “Asian 
disease” problem, involving a choice between a sure thing 
and a gamble that could be framed either as gains or 

losses. As in the Asian disease problem, the majority of 
participants chose the sure option with a gain frame and 
the gamble option with a loss frame.  Yet significant 
minorities of participants chose the gamble with a gain 
frame or the sure option with a loss frame, in violation of 
the usual heuristics.  fMRI measurements showed that the 
heuristics-violators had more activation than the 
heuristics-followers both in ACC and in the orbitofrontal 
cortex (OFC).  Conversely, the heuristics-followers had 
more activation in the amygdala, the subcortical area most 
involved with primary emotional experience. 
 

 
 
 
 

Fig. 4.  Results of our simulation of the win condition of the 
Denes-Raj and Epstein [6] experiment. 
 

 

 
 
Fig. 5. Results of our simulation of the loss condition of the 
Denes-Raj and Epstein [6] experiment. 
 
The probability/frequency task modeled here is more 

cognitively demanding than the task of DeMartino et al. 
[20].  Hence we expect that DLPFC, the prefrontal area 
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involved in the most complex cognitive processing, 
should play a larger role in the probability/frequency task.  
The difference in function between these two prefrontal 
regions is believed to be primarily one of abstraction in 
their representations [21].  That theory is based in part on 
monkey data implicating OFC in processing shifts of 
simple reward contingencies and DLPFC in processing 
shifts of rule types [22]. 

The frequency/probability network discussed here is a 
step toward network modeling of the more general 
process of deciding appropriate rules for decision tasks, 
when the potential rules can be at any one several 
cognitive levels [11].  Recent fMRI studies, combined 
with neural network theories, suggest that ACC is 
sensitive to the level of complexity of tasks, or in other 
words, to the potential for error if the wrong rule is 
chosen [23].  If the task is determined to be relatively 
effortful, the ACC then “recruits” other brain regions 
required for processing task details.  This often includes 
activation of DLPFC, and may also include signals to 
midbrain nuclei that produce modulatory 
neurotransmitters [24].  The detailed structure and 
function of network connections between all these 
executive-related brain regions is still largely unknown, 
and we hope the algorithmic framework presented here 
can ultimately lead to data-driven hypotheses about those 
connections. 
 

REFERENCES 
 
[1] V. F. Reyna and C. J. Brainerd, “Fuzzy-trace theory: An interim 

synthesis,” Learning and Individual Differences, Vol. 7, 1-75, 1995. 
[2] V. F. Reyna, F. Lloyd, and C. J. Brainerd, “Memory, development, 

and rationality: An integrative theory of judgment and decision 
making,” in S. Schneider and J. Shanteau (Editors), Emerging 
Perspectives on Judgment and Decision Research, pp. 203-245, 
Cambridge University Press, New York, 2003. 

[3] V. F. Reyna, “How people make decisions that involve risk: A dual-
processes approach,” Current Directions in Psychological Science, 
Vol. 13, 60-66, 2004. 

[4] V. F. Reyna and C. J. Brainerd, “The origins of probability 
judgment: A review of data and theories,” in G. Wright and P. 
Ayton (Editors), Subjective Probability, pp. 239-272.  John Wiley & 
Sons, Chichester, UK, 1994. 

[5] K. Yamagishi, “When a 12.86% mortality is more dangerous than 
24.14%: Implications for risk communication, “Applied Cognitive 
Psychology, Vol. 11, 495-506, 1997. 

[6] V. Denes-Raj and S. Epstein, “Conflict between intuitive and rational 
processing: When people behave against their better judgment,” 
Journal of Personality and Social Psychology, Vol. 66, 819-829, 
1994. 

[7] R. Pacini and S. Epstein, “The interaction of three facets of concrete 
thinking in a game of chance,” Thinking and Reasoning, Vol. 5, 
303-325, 1999. 

[8] M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, and J. D. 
Cohen, “Conflict monitoring and cognitive control.  Psychological 
Review, Vol. 108, 624-652, 2001. 

[9] M. P. Paulus, N. Hozack, L. Frank, and G. G. Brown, “Error rate and 
outcome predictability affect neural activation in prefrontal cortex 
and anterior cingulate during decision-making,” NeuroImage, Vol. 
15, 836-846, 2001.   

[10] S. A. Huettel and J. Misiurek, “Modulation of prefrontal cortex 
activity by information toward a decision rule,” Neuroreport, Vol. 
15, 1883-1886, 2004. 

[11] S. A. Bunge, “How we use rules to select actions: A review of 
evidence from cognitive neuroscience,” Cognitive, Affective, & 
Behavioral Neuroscience, Vol. 4, 564-579, 2004. 

[12] J. T. Cacioppo and R. E. Petty, “The need for cognition,” Journal of 
Personality and Social Psychology, Vol. 42, 116-131, 1982. 

[13] J. T. Cacioppo, R. E. Petty, J. A. Feinstein, and W. B. G. Jarvis, 
“Dispositional differences in cognitive motivation: The life times of 
individuals varying in the need for cognition,” Psychological 
Bulletin, Vol. 119, 197-253, 1996. 

[14] P. L. Curşeu, “Need for cognition and rationality in decision-
making,” Studia Psychologica, Vol. 48, 141-156, 2006. 

[15] L. Perlovsky, “Toward physics of the mind: Concepts, emotions, 
consciousness, and symbols,” Physics of Life Reviews, Vol. 3, 23-
55, 2006. 

[16] L. Zadeh, "Fuzzy sets," Information and Control, Vol. 8, 338-353, 
1965. 

[17] S. Grossberg and D. Repin, “A neural model of how the brain 
represents and compares multi-digit numbers: spatial and 
categorical processes,” Neural Networks, Vol. 16, 1107-1140, 2003. 

[18] M. Piazza, V. Izard, P. Pinel, D. Le Bihan, and S. Dehaene, 
“Tuning curves for approximate numerosity in the human 
intraparietal sulcus,” Neuron, Vol. 44, 547-555, 2004  

[19] V. F. Reyna and C. J. Brainerd, “Numeracy, ratio bias, and 
denominator neglect in judgments of risk and probability,” Learning 
and Individual Differences, in press, 2007. 

[20] B. DeMartino, D. Kumaran, B. Seymour, and R. Dolan, “Frames, 
biases, and rational decision-making in the human brain,” Science, 
Vol. 313, 684-687, 2006. 

[21] M. J. Frank, B. Loughry, and R. C. O’Reilly, “Interactions between 
frontal cortex and basal ganglia in working memory: A 
computational model,” Cognitive, Affective, & Behavioral 
Neuroscience, Vol. 1, 137-160, 2001. 

[22] R. Dias, T. W. Robbins, and A. C. Roberts, “Dissociation in 
prefrontal cortex of affective and attentional shifts,” Nature, Vol. 
380, 72-75, 1997. 

[23] J. W. Brown and T. S. Braver, “Learned predictions of error 
likelihood in the anterior cingulate cortex,” Science, Vol. 307, 1118-
1121, 2005. 

[24] G. Aston-Jones and J. D. Cohen, “An integrative theory of locus 
coeruleus-norepinephrine function:  Adaptive gain and optimal 
performance,” Annual Review of Neuroscience, 403-450. 


